“…In literature, there are many heuristic algorithms utilized for training MLPs such as differential evolution (DE) (Llonen et al, 2003;Slowik and Bialko, 2008), ant colony optimization (ACO) (Blum and Socha, 2005;Socha and Blum, 2007), genetic algorithm (GA) (Whitney et al, 1990;Mirjalili et al, 2012), artificial bee colony (ABC) (Karaboga et al, 2007;Ozturk and Karaboga, 2011) and particle swarm optimization (PSO) (Mendes et al, 2002;Gudise and Venayagamoorthy, 2003). The recent additions in the list of stochastic training algorithms include social spider optimization algorithm (SSO) (Pereira, 2014), teachinglearning based optimization (TLBO) (Uzlu et al, 2014), biogeography based optimization (BBO) (Mirjalili et al, 2014), symbiotic organisms search algorithm (SOS) (Wu et al, 2016), glowworm swarm optimization (GSO) (Alboaneen et al, 2017) and improved PSO (Li, 2018).…”