Improving the Machine Learning Stock Trading System: An N‐Period Volatility Labeling and Instance Selection Technique
Young Hun Song,
Myeongseok Park,
Jaeyun Kim
Abstract:Financial technology is crucial for the sustainable development of financial systems. Algorithmic trading, a key area in financial technology, involves automated trading based on predefined rules. However, investors cannot manually analyze all market patterns and establish rules, necessitating the development of supervised learning trading systems that can discover market patterns using machine or deep learning techniques. Many studies on supervised learning trading systems rely on up–down labeling based on pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.