Autoantibody response against the small nuclear ribonucleoprotein (snRNP) complex is a characteristic feature of systemic lupus erythematosus. The current investigation was undertaken to determine whether activation of SmD-reactive T cells by synthetic peptides harboring T cell epitopes can initiate a B cell epitope spreading cascade within the snRNP complex. T cell epitopes on SmD were mapped in A/J mice and were localized to three regions on SmD, within aa 26–55, 52–69, and 86–115. Immunization with synthetic peptides SmD31–45, SmD52–66, and SmD91–110 induced T and B cell responses to the peptides, with SmD31–45 inducing the strongest response. However, only SmD52–66 immunization induced T cells capable of reacting with SmD. Analysis of sera by immunoprecipitation assays showed that intermolecular B cell epitope spreading to U1RNA-associated A ribonucleoprotein and SmB was consistently observed only in the SmD52–66-immunized mice. Surprisingly, in these mice, Ab responses to SmD were at low levels and transient. In addition, the sera did not react with other regions on SmD, indicating a lack of intramolecular B cell epitope spreading within SmD. Our study demonstrates that T cell responses to dominant epitope on a protein within a multiantigenic complex are capable of inducing B cell responses to other proteins within the complex. This effect can happen without generating a good Ab response to the protein from which the T epitope was derived. Thus caution must be taken in the identification of Ags responsible for initiating autoimmune responses based solely on serological analysis of patients and animals with systemic autoimmune disorders.