Background: The alarming mortality rate of sepsis in ICUs has garnered significant attention. The precise etiology remains elusive. Mitochondria, often referred to as the cellular powerhouses, have been postulated to have a dysfunctional role, correlating with the onset and progression of sepsis. However, the exact causal relationship remains to be defined. Method: Employing the Mendelian randomization approach, this study systematically analyzed data from the IEUOpenGWAS and UKbiobank databases concerning mitochondrial function-related proteins and their association with sepsis, aiming to delineate the causal relationship between the two. Results: The findings underscored a statistically significant association of GrpE1 with sepsis, registering a P value of 0.005 and an OR of 0.499 (95% CI: 0.307−0.810). Likewise, HTRA2, ISCU, and CUP3 each manifested significant associations with sepsis, yielding OR values of 0.585, 0.637, and 0.634, respectively. These results suggest potential implications of the aforementioned proteins in the pathogenesis of sepsis. Conclusion: The present study furnishes novel evidence elucidating the roles of GrpE1, HTRA2, ISCU, and CUP3 in the pathophysiology of sepsis. Such insights pave the way for a deeper understanding of the pathological mechanisms underpinning sepsis and hint at promising therapeutic strategies for the future.