The evolution of quality attributes and their association with the protein properties of lightly tilapias fillets salted with different replacement proportions of NaCl with KCl (0%, 10%, 30%, 50%, 70%, 100%) at the same ionic strength were investigated. KCl replacements using optimal substitution (50% of KCl) contributed to maintaining desired quality properties. Further, KCl replacement (about 50~70% of KCl) led to the insolubilization and weakened stability of myofibrillar proteins, represented by the unfolding of the myofibrillar protein, increased surface hydrophilic points, and strengthened internal protein-protein interaction, resulting in the structurally reinforced hardness and lower water-holding capacity. Excessive replacement (more than 70% of KCl) showed apparent deterioration in taste quality, coloration, and hardness received by sensory sensation caused by immoderate hydrolysis and aggravated oxidation of the myofibrillar protein. In this sense, insights into KCl replacements on protein properties might be a positive approach to improving quality attributes of lightly salted tilapias fillets.