Two series of fluorinated copolymerized polyimide films with different dianhydride ratios were prepared via the conventional two-step method by using 4,4-oxydianiline(ODA) as the diamine monomer, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride(6FDA), 4,4'-oxydiphthalic anhydride(ODPA) and 3,3',4,4'-biphenyl tetracarboxylic dianhydride(BPDA) as the dianhydride monomer in N, N-dimethylacetamide. With the increase of 6FDA in the proportion of dianhydride, the tensile strength of the polyimide film showed a decreasing trend. This work provided a high performance film. The mass retention rate at 800°C was above 50%. The glass transition temperatures of the two films were 260 °C and 275 °C. The storage modulus of the two were 1500 MPa and 1250 MPa. The loss modulus were 218.70 MPa and 120.74 MPa. The transmittance of the film was 71.43%. The transmittance of fluorinated copolymerized polyimide films were significantly improved in the visible region of ultraviolet light, indicating that the polyimide film with high transmittance, high tensile strength, high heat resistance and high storage modulus was successfully prepared. It had an excellent application prospect in the field of flexible display.