The demand for low-carbon and energy-efficient building designs is urgent, especially considering that building energy consumption constitutes a significant part of global energy usage. Unlike small to medium-sized buildings such as residential and office spaces, large public buildings, like sports facilities, have unique usage patterns and architectural forms, offering more significant potential for energy-saving strategies. This review focuses on sports buildings, selecting 62 high-quality papers published in building science over the past 30 years that investigate low-carbon and energy-efficient research. Summarizing and synthesizing these papers reveals that current studies predominantly concentrate on four main areas: indoor air quality, ventilation, thermal environment, and energy consumption. Notably, many studies emphasize improving indoor thermal comfort and reducing energy consumption in sports buildings through measurements and evaluations of indoor thermal environments, temperature distributions, heat transfer phenomena, and energy consumption analyses. Key outcomes indicate that green technology innovations, such as energy substitution technologies, significantly enhance energy efficiency and reduce CO2 emissions. However, present research emphasizes singular energy-saving approaches, suggesting future directions could integrate comprehensive green technologies, life-cycle assessments, and applications of intelligent technologies and the Internet of Things (IoT). These enhancements aim to provide more effective and sustainable solutions for implementing green, low-carbon energy practices in sports buildings. The review emphasizes that in order to accomplish sustainable urban growth and achieve global carbon neutrality targets, a comprehensive approach involving technical innovation, legislative assistance, and extensive preparation is crucial.