Cardiovascular diseases (CVDs) afflict many people across the world; thus, understanding the pathophysiology of CVD and the biomechanical forces which influence CVD progression is important in the development of optimal strategies to care for these patients. Over the last two decades, cardiac magnetic resonance (CMR) imaging has offered increasingly important insights into CVD. Computational fluid dynamics (CFD) modeling, a method of simulating the characteristics of flowing fluids, can be applied to the study of CVD through the collaboration of engineers and clinicians. This chapter aims to explore the current state of the CMR-derived CFD, as this technique pertains to both acquired CVD (i.e., atherosclerosis) and congenital heart disease (CHD).