Sphingomyelin (SM) is abundant in the outer leaflet of the cell plasma membrane, with the ability to concentrate in so-called lipid rafts. These specialized cholesterol-rich microdomains not only are associated with many physiological processes but also are exploited as cell entry points by pathogens and protein toxins. SM binding is thus a widespread and important biochemical function, and here we reveal the molecular basis of SM recognition by the membrane-binding eukaryotic cytolysin equinatoxin II (EqtII). The presence of SM in membranes drastically improves the binding and permeabilizing activity of EqtII. Direct binding assays showed that EqtII specifically binds SM, but not other lipids and, curiously, not even phosphatidylcholine, which presents the same phosphorylcholine headgroup. Analysis of the EqtII interfacial binding site predicts that electrostatic interactions do not play an important role in the membrane interaction and that the two most important residues for sphingomyelin recognition are Trp 112 and Tyr 113 exposed on a large loop. Experiments using site-directed mutagenesis, surface plasmon resonance, lipid monolayer, and liposome permeabilization assays clearly showed that the discrimination between sphingomyelin and phosphatidylcholine occurs in the region directly below the phosphorylcholine headgroup. Because the characteristic features of SM chemistry lie in this subinterfacial region, the recognition mechanism may be generic for all SM-specific proteins.
Sphingomyelin (SM)8 is an important eukaryotic membrane lipid, located for the most part in the outer leaflet of the plasma membrane in the form of specialized cholesterol-rich microdomains, so-called lipid rafts (1, 2). Many pathogens and toxic proteins employ lipid rafts to invade cells (3, 4), but currently little is known about the molecular details of the recognition mechanism of the lipid components present in the rafts. In the particular case of SM, the specific recognition occurs even though SM exposes the same phosphorylcholine headgroup as the other abundant lipid, phosphatidylcholine. SM-binding proteins are currently exploited as specific markers for cellular SM (5) and are used to identify other proteins involved in sphingolipid metabolism (6).Actinoporins are extremely potent cytolysins produced exclusively by sea anemones (7,8). They may be used to capture prey, in intraspecific aggression, or in preventing adhesion of other organisms (7, 9). The two most studied representatives are EqtII, isolated from the sea anemone Actinia equina, and sticholysin II (StII) from Stichodactyla helianthus. Actinoporins constitute a family of conserved proteins that cause hemolysis of red blood cells by colloid-osmotic lysis and exhibit cytolytic activity against various cell lines (7, 10 -12). Even the most distant members of the family share more than 60% sequence identity and the available threedimensional structures of EqtII and StII are nearly superimposable (13-15). The structure is composed of a tightly folded -sandwich flanked b...