Osteoarthritis (OA) is the most common disease of arthritis, a chronic joint disease that is always correlated with massive destruction such as cartilage destruction, inflammation of the synovial membrane, and so on. This study aims to explore the role of long noncoding RNA (lncRNA) LOC101928134 in the synovial hyperplasia and cartilage destruction, more specifically, in the Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway in an OA rat model. Microarray‐based gene expression analysis was conducted to screen out the lncRNA differentially expressed in OA and predict the target gene of the lncRNA with the involvement of the signaling pathway through Kyoto encyclopedia of genes and genomes (KEGG) analysis. A model of OA was established and treated with the small interfering RNA LOC101928134/inhibitor of JAK/STAT signaling pathway to investigate the relationship among LOC101928134, IFNA1, and the JAK/STAT signaling pathway in OA. The effect of LOC101928134 on the serum levels of IFNA1, interleukin‐1β, and tumor necrosis factor‐α, and the apoptosis of synovial and cartilage cells was evaluated. LOC101928134, which was found to be highly expressed in knee joint synovial tissues of OA rats, regulated the expression of IFNA1 gene and inhibited JAK/STAT signaling pathway. Downregulation of LOC101928134 resulted in reduced knee joint synovitis, relived inflammatory damage, and knee joint cartilage damage of OA rats. Besides, synovial cell apoptosis was enhanced upon LOC101928134 downregulation, while cartilage cell apoptosis of OA rats was suppressed. These results demonstrate that downregulation of LOC101928134 suppresses the synovial hyperplasia and cartilage destruction of OA rats via activation of JAK/STAT signaling pathway by upregulating IFNA1, providing a new candidate for the treatment of OA.