2023
DOI: 10.1016/j.bspc.2023.104695
|View full text |Cite
|
Sign up to set email alerts
|

Interpretation of lung disease classification with light attention connected module

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 20 publications
(4 citation statements)
references
References 54 publications
0
3
0
1
Order By: Relevance
“…Model CNN yang diusulkan menunjukkan tingkat akurasi 90%. Diharapkan dapat berperan penting sebagai alat bantu untuk membantu staf medis apakah ada kelainan pernapasan selama pola inhalasi atau ekspirasi (Choi & Lee, 2023).…”
Section: Penelitian Terkaitunclassified
“…Model CNN yang diusulkan menunjukkan tingkat akurasi 90%. Diharapkan dapat berperan penting sebagai alat bantu untuk membantu staf medis apakah ada kelainan pernapasan selama pola inhalasi atau ekspirasi (Choi & Lee, 2023).…”
Section: Penelitian Terkaitunclassified
“…The basic models can be referred to [ 33 , 126 , 127 ]. Preferably, the model undergoes some tailoring or tuning of its structure based on the classification task and optimization strategy [ 24 , 128 , 129 ]. For example, the FNN-based method transforms the lung sound into a combination representation of acoustic characteristics, then feeds it to the FNN for abnormal sound identification [ 18 ].…”
Section: Deep Learning In Lung Sound Analysismentioning
confidence: 99%
“…Learning the distribution of weights among feature maps, thus improving the feature extraction capability of the model. Efficient channel attention requires only a few parameters to produce remarkable results [42]. Due to the superior performance of ECA-Net, many studies have been conducted to use it for the adaptation of channel feature weights [43,44].…”
Section: Eca-netmentioning
confidence: 99%