The concept of graph coloring has become a very active field of research that enhances many practical applications and theoretical challenges. Various methods have been applied in carrying out this study. Let G be a finite group. In this paper, we introduce a new graph of groups, which is a commuting order product prime graph of finite groups as a graph having the elements of G as its vertices and two vertices are adjacent if and only if they commute and the product of their order is a prime power. This is an extension of the study for order product prime graph of finite groups. The graph's general presentations on dihedral groups, generalized quaternion groups, quasi-dihedral groups, and cyclic groups have been obtained in this paper. Moreover, the commuting order product prime graph on these groups has been classified as connected, complete, regular, or planar. These results are used in studying various and recently introduced chromatic numbers of graphs.