2018
DOI: 10.1016/j.flowmeasinst.2018.10.010
|View full text |Cite
|
Sign up to set email alerts
|

Iterative reconstruction algorithm for the inverse problems in electrical capacitance tomography

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 37 publications
(11 citation statements)
references
References 38 publications
0
10
0
1
Order By: Relevance
“…Suppose x is the vector of permittivity distribution, y is the vector of capacitance data, x is the distribution of reconstructed permittivity, and y is the estimated data capacitance which is calculated by the distribution of permittivity [28]. en, the autoencoder (Figure 5) (code and decode) behave like…”
Section: Deepmentioning
confidence: 99%
“…Suppose x is the vector of permittivity distribution, y is the vector of capacitance data, x is the distribution of reconstructed permittivity, and y is the estimated data capacitance which is calculated by the distribution of permittivity [28]. en, the autoencoder (Figure 5) (code and decode) behave like…”
Section: Deepmentioning
confidence: 99%
“…Eight experimental technical documents were published on the information website [139]. Later scholars mainly studied image reconstruction algorithms, improving signal-to-noise ratio and optimizing sensors [140][141][142].…”
Section: Electrical Capacitance Tomographymentioning
confidence: 99%
“…(1) The speed of image algorithm reconstruction has been improved. The L1 regularization-based second-order total variation (LSTV) algorithm proposed by G Guo et al [140] ensures the sparsity of the reconstructed object, reduces the staircase effect brought by the first order total variation (FTV) regularization, and improves the estimation reliability. Cao et al [145] proposed Calderon's method combined with a closed-loop control strategy for reconstructed images from noise-free data.…”
Section: Electrical Capacitance Tomographymentioning
confidence: 99%
“…Se detectó la importancia de esta variable en la predicción de la generación de V. Para elaborar el mejor modelo de V en función de 1/h, se fijó la variable independiente h y la I fue aleatoria. Para cada valor fijo de h se obtuvo muchos valores de V, por lo que se recurrió a estimar un valor medio de V para cada valor de h. A estos valores registrados y estimados, se les realizó la prueba de normalidad de Shapiro-Wilk [18], reflejando una distribución normal y no se requiere ajustes al modelo. La ecuación de la regresión lineal modelo lineal resultante utilizando la ecuación 1, se presenta en la siguiente ecuación (ver ecuación 4): ܸ ൌ 5.5143ሺ1/ℎሻ 0.26944…”
Section: Modelamiento De Las Respuestas De V En Función De La 1/hunclassified