Technologies, processes, and systems are not immune to failure, which is why robust monitoring systems are crucial to ensure their continued functionality and safety. An interdisciplinary approach that combines engineering, data science, and material science allows for more comprehensive measurement and analysis, enabling better decision-making and more accurate predictions of performance. The integration of these technologies leads to increased safety, reduced human error, and significant cost savings by preventing costly repairs and downtime. Continuous monitoring helps in avoiding catastrophic failures, allowing for early detection of issues before they escalate. Additionally, it opens opportunities for improving the design of mechanical systems and structures, optimizing the organization of maintenance. By reducing human impact and enhancing safety, these monitoring systems offer a more secure and efficient operation. Furthermore, through advanced predictive analytics, the remaining service life can be estimated, facilitating more effective planning. The development of such smart, intelligent mechanical systems and structures promises a future where maintenance is proactive rather than reactive, creating a safer, more sustainable environment for both operators and systems by leveraging advanced sensors, data analytics, and adaptive technologies for real-time monitoring and damage detection.