Abstract:We consider the problem of feature extraction for kernel machines. One of the key challenges in this problem is how to detect discriminative features while mapping features into kernel spaces. In this paper, we propose a novel strategy to quantify the importance of features. Firstly, we derive an informative energy model to quantification of feature difference. Secondly, we move the features in the same class closer and push away those belong to different classes according to the model and derivate its objecti… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.