The aim of the study was to examine the chemistry, kinetics and mechanism of oxidizing roasting of a typical sample of sulfide copper-cobalt ore. The research object was sulfide copper-cobalt ore with the following main minerals: pyrite, pyrrhotite, chalcopyrite, sphalerite, tremolite, silicon dioxide, talc, siderite and calcite. The methodology involved high-temperature X-ray phase analysis (100–900°C), thermogravimetry, differential scanning calorimetry and mass spectrometry of the released gas (30–1100°C, heating rate – 5–20°C·min-1, air flow rate – 30 cm3·min-1). The chemistry, kinetics and mechanism of oxidizing roasting of sulfide copper-cobalt ore with a particle size of <0.1 mm were studied. It was found that the process can be represented as a set of seven elementary reactions: five exothermic reactions (at 398–445, 394–488, 440–498, 433–549 and 451–562°C), corresponding to the intense combustion of iron, copper and zinc sulfides, and two endothermic reactions (at 651–664 and 743–927°C), associated with the decomposition of residual copper and iron sulfates. Kinetic analysis (Kissinger and Augis-Bennett methods, identification of the reaction model by reference function and iterative optimization) of differential scanning calorimetry data in connection with the above reactions showed that the limiting stage of the latter is nucleation and crystal growth. The values of activation energy, pre-exponential factor and Avrami parameter ranged between 140–459 kJ·mol-1, 1.41·104–3.49·1031 with-1 and 1.0–1.7, respectively. It was established that crystallization of the products of elementary reactions is accompanied by an increase in the number of nuclei; new phase nuclei can be formed both on the surface and in the bulk of ore particles. The crystal growth is one-dimensional and is controlled by a chemical reaction at the interphase boundary or by diffusion of reagents. The results obtained can be applied in the practice of oxidizing roasting of sulfide ores and concentrates.