“…Typically, receptor modulators will produce either a positive DMR response, where movement of cellular components into a focal plane within ∼150 nm of the substrate increases the wavelength of the reflected light or, conversely, a negative DMR response where movement of cellular component outside the focal plane decreases the wavelength of the reflected light. Numerous GPCRs have been evaluated in label free platforms such as the Epic ® including the metabotropic acetylcholine receptors ( Dodgson et al, 2009 ; Kebig et al, 2009 ; Lee, 2009 ; Schroder et al, 2010 ; Schroder et al, 2011 ; Schrage et al, 2013 ), dopamine receptors ( Lee, 2009 ), cannabinoid receptors ( Schroder et al, 2010 ; Codd et al, 2011 ), prostaglandin receptors ( Schroder et al, 2010 ), free fatty acid receptor ( Schroder et al, 2010 ; Schmidt et al, 2011 ), adrenergic receptors ( Schroder et al, 2010 ; Ferrie et al, 2014 ; Grundmann et al, 2018 ), γ-aminobutyric acid receptors ( Klein et al, 2016 ), the nociceptin/orphanin FQ peptide receptor ( Malfacini et al, 2018 ), the neuropeptide S receptor ( Ruzza et al, 2018 ), the uracil nucleotide/cysteinyl leukotriene receptor ( Grundmann et al, 2018 ), histamine receptors ( Seibel-Ehlert et al, 2021 ), the urotensin receptor ( Lee et al, 2014 ) and opioid receptors ( Codd et al, 2011 ; Morse et al, 2011 ). It has now become clear that both the cellular context and the type of coupling can directly influence the kinetics (positive or negative DMR) of a modulator in such a cell-based assay ( Schroder et al, 2010 ; Schroder et al, 2011 ).…”