Purpose
Riparian zone contamination is a growing problem for several European catchments due to high anthropogenic pressures. This study investigates As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in the Sava River riparian zone, characterized by wide agricultural areas, various geological substrates, and different types of industrial pollution. The accumulation and mobility of these elements were studied because they are listed as priority substances in the Water Framework Directive and environmental objectives for surface waters.
Materials and methods
Sampling was performed during the sampling campaign of the EU 7th FW-funded GLOBAQUA project in September 2015 during a low-water event. Soil samples were collected along the Sava River at 12 selected sampling sites, from a depth of 0–30 cm, at a distance of 10–15 m from the river bank. The extent of pollution was estimated by determining total and readily soluble element concentrations in the soils. Potential ecological risk and the source of the selected elements in the soils was determined using the enrichment factor (EF), potential ecological risk index (RI), and statistical methods such as the principal component analysis (PCA) and multiple linear regression analysis (MLRA).
Results and discussion
This study showed that concentrations of the selected elements increase along the Sava. In terms of origin, PCA and MLRA indicated that Cr and Ni in soils are predominantly lithogenic, while As, Cd, Pb, and Zn are both lithogenic and anthropogenic (ore deposits, industry, and agriculture). PCA singled out Cu since its origin in soil is most probably from specific point-source pollution. EF was generally minor to moderate for most of the examined elements, apart from Cu, for which the EF was significant at one sampling site. Overall ecological risk (RI) fell within the low-risk category for most sites, apart from Belgrade sampling site (BEO), where high total Cd content affected individual and overall ecological risk indicators, indicating Cd could represent a considerable ecological risk for the downstream riparian zone.
Conclusions
At downstream sites, there was a noticeable increase in PTE content, with Cd, Cr, Ni, and Zn exceeding the proposed threshold values for European soils, indicating rising contamination in riparian soils. In terms of the ecological risk, only Cd could pose a potential ecological threat for the downstream riparian zone.