Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field-evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/ Cry2Ab2) events and F 1 hybrids of the selected and susceptible strains (heterozygotes) on DAS-444Ø6-6 × DAS-81419-2 soybean with tolerance to 2,4-d, glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1Fsoybean. However, homozygous-resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F-soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous-resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and finite rates of population increase on Cry1Ac/Cry1F-soybean and non-Bt soybean. In contrast, heterozygotes had their fertility life table parameters significantly reduced on Cry1Ac/Cry1F-soybean. Therefore, the selection of S. frugiperda for resistance to single and pyramided Bt maize can result in cross-crop resistance to DAS-444Ø6-6 × DAS-81419-2 soybean. The importance of these results to integrated pest management (IPM) and insect resistance management (iRM) programs is discussed. Transgenic plants expressing insecticidal proteins from Bacillus thuringiensis Berliner (Bt) have significantly contributed to IPM programs worldwide in the last decades 1-4. Brazil is one of the largest adopter of biotech crops that express Bt proteins in the world, with approximately 36 million hectares of cultivated area during the 2017/2018 season, representing 62, 79 and 82% of the total area planted with soybean, maize and cotton, respectively 4. Brazil was also the first country in the world to approve the commercial release of Bt-soybean expressing the Cry1Ac protein (event MON87701 × MON89788) 5 , which has been cultivated since 2013/2014 season. This biotech event provided control of important soybean pests, such as Anticarsia gemmatalis (Lepidoptera: Erebidae),