It has been suggested that reflux laryngitis (RL) is involved in apneas-bradycardias of the newborn. The aim of the present study was to develop a unique RL model in newborn lambs to test the hypothesis that RL enhances the cardiorespiratory components of the laryngeal chemoreflexes (LCR) in the neonatal period. Gastric juice surrogate (2 ml of normal saline solution with HCl pH 2 + pepsin 300 U/ml) (RL group, n = 6) or normal saline (control group, n = 6) was repeatedly injected onto the posterior aspect of the larynx, 3 times a day for 6 consecutive days, via a retrograde catheter introduced into the cervical esophagus. Lambs instilled with gastric juice surrogate presented clinical signs of RL, as well as moderate laryngitis on histological observation. Laryngeal chemoreflexes were thereafter induced during sleep by injection of 0.5 ml of HCl (pH 2), ewe's milk, distilled water or saline into the laryngeal vestibule via a chronic, transcutaneous supraglottal catheter. Overall, RL led to a significantly greater respiratory inhibition compared with the control group during LCR, including longer apnea duration (P = 0.01), lower minimal respiratory rate (P = 0.002), and a more prominent decrease in arterial hemoglobin saturation (SpO(2)) (P = 0.03). No effects were observed on cardiac variables. In conclusion, 1) our unique neonatal ovine model presents clinical and histological characteristics of RL; and 2) the presence of RL in newborn lambs increases the respiratory inhibition observed with LCR, at times leading to severe apneas and desaturations.