The cathode and anode electrodes in lithium‐ion batteries typically contain a significant proportion of particles and binders. During the electrode drying process, high temperature will lead to the binder migration phenomenon. Uneven particle/binder distribution can cause poor adhesion between coating and substrate, disruption of conductive paths, and decrease in electrode performance. In this study, a two‐layered cathode was designed by using separate compositions of slurry ingredients in each layer, as produced by means of a simultaneous multilayer coating method. The two‐layered cathode with the top layer containing less binder than the bottom layer yielded a better particle/binder distribution in the final structure under high‐temperature drying. A battery made with the two‐layered cathode appeared to give a better overall performance.