Detecting the moisture content of grain accurately and rapidly has important significance for harvesting, transport, storage, processing, and precision agriculture. There are some problems with the slow detection speeds, unstable detection, and low detection accuracy of moisture contents in corn harvesters. In that case, an online moisture detection device was designed, which is based on double capacitors. A new method of capacitance complementation and integration was proposed to eliminate the limitation of single data. The device is composed of a sampling mechanism and a double-capacitor sensor consisting of a flatbed capacitor and a cylindrical capacitor. The optimum structure size of the capacitor plates was determined by simulation optimization. In addition to this, the detection system with software and hardware was developed to estimate the moisture content. Indoor dynamic measurement tests were carried out to analyze the influence of temperature and porosity. Based on the influencing factors and capacitance, a model was established to estimate the moisture content. Finally, the support vector machine (SVM) regressions between the capacitance and moisture content were built up so that the R2 values were more than 0.91. In the stability test, the standard deviation of the stability test was 1.09%, and the maximum relative error of the measurement accuracy test was 1.22%. In the dynamic verification test, the maximum error of the measurement was 4.62%, less than 5%. It provides a measurement method for the accurate, rapid, and stable detection of the moisture content of corn and other grains.