With the rise of social media and online communication, the issue of cyberbullying has gained significant prominence. While extensive research is being conducted to develop more effective models for detecting cyberbullying in monolingual languages, a significant gap exists in understanding code-mixed languages and the need for explainability in this context. To address this gap, we have introduced a novel benchmark dataset named Bully-Explain for explainable cyberbullying detection in code-mixed language. In this dataset, each post is meticulously annotated with four labels: bully, sentiment, target, and rationales, indicating the specific phrases responsible for identifying the post as a bully. Our current research presents an innovative unified generative framework, GenEx, which reimagines the multitask problem as a text-to-text generation task. Our proposed approach demonstrates its superiority across various evaluation metrics when applied to the BullyExplain dataset, surpassing other baseline models and current state-of-the-art approaches. 1 Disclaimer: The article contains profanity, an inevitable situation for the nature of the work involved. These in no way reflect the opinion of authors.