What role did fluctuations play in biomass availability for secondary consumers in the disappearance of Neanderthals and the survival of modern humans? To answer this, we quantify the effects of stadial and interstadial conditions on ecosystem productivity and human spatiotemporal distribution patterns during the Middle to Upper Palaeolithic transition (50,000–30,000 calibrated years before the present) in Iberia. First, we used summed probability distribution, optimal linear estimation and Bayesian age modelling to reconstruct an updated timescale for the transition. Next, we executed a generalized dynamic vegetation model to estimate the net primary productivity. Finally, we developed a macroecological model validated with present-day observations to calculate herbivore abundance. The results indicate that, in the Eurosiberian region, the disappearance of Neanderthal groups was contemporaneous with a significant decrease in the available biomass for secondary consumers, and the arrival of the first Homo sapiens populations coincided with an increase in herbivore carrying capacity. During stadials, the Mediterranean region had the most stable conditions and the highest biomass of medium and medium–large herbivores. These outcomes support an ecological cause for the hiatus between the Mousterian and Aurignacian technocomplexes in Northern Iberia and the longer persistence of Neanderthals in southern latitudes.