SummaryComputational modelling of microbiome metabolism has proved instrumental to catalyse our understanding of diet-host-microbiome-disease interactions through the interrogation of mechanistic, strain- and molecule-resolved metabolic models. We present APOLLO, a resource of 247,092 human microbial genome-scale metabolic reconstructions spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups, and five body sites. We explored the metabolic potential of the reconstructed strains and developed a machine learning classifier able to predict with high accuracy the taxonomic strain assignments. We also built 14,451 sample-specific microbial community models, which could be stratified by body site, age, and disease states. Finally, we predicted faecal metabolites enriched or depleted in gut microbiomes of people with Crohn’s disease, Parkinson disease, and undernourished children. APOLLO is compatible with the human whole-body models, and thus, provide unprecedented opportunities for systems-level modelling of personalised host-microbiome co-metabolism. APOLLO will be freely available underhttps://www.vmh.life/.