Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Over the previous two decades, a notable array of space exploration missions have been initiated with the primary aim of facilitating the return of both humans and robots from Earth to the moon. The significance of these endeavors cannot be emphasized enough as numerous entities, both public and private, from across the globe have invested substantial resources into this pursuit. Researchers have committed their efforts to addressing the challenges linked to lunar communication. Even with all of these efforts, only a few of the many suggested designs for communication and antennas on the moon have been evaluated and compared. These designs have also not been shared with the scientific community. To bridge this gap in the existing body of knowledge, this paper conducts a thorough review of lunar surface communication and the diverse antenna designs employed in lunar communication systems. This paper provides a summary of the findings presented in lunar surface communication research while also outlining the assorted challenges that impact lunar communication. Apart from various antenna designs reported in this field, based on their intended usage, two additional classifications are introduced: (a) mission-based antennas—utilized in actual lunar missions—and (b) research-based antennas—employed solely for research purposes. Given the critical need to comprehend and predict lunar conditions and antenna behaviors within those conditions, this review holds immense significance. Its relevance is particularly pronounced in light of the numerous upcoming lunar missions that have been announced.
Over the previous two decades, a notable array of space exploration missions have been initiated with the primary aim of facilitating the return of both humans and robots from Earth to the moon. The significance of these endeavors cannot be emphasized enough as numerous entities, both public and private, from across the globe have invested substantial resources into this pursuit. Researchers have committed their efforts to addressing the challenges linked to lunar communication. Even with all of these efforts, only a few of the many suggested designs for communication and antennas on the moon have been evaluated and compared. These designs have also not been shared with the scientific community. To bridge this gap in the existing body of knowledge, this paper conducts a thorough review of lunar surface communication and the diverse antenna designs employed in lunar communication systems. This paper provides a summary of the findings presented in lunar surface communication research while also outlining the assorted challenges that impact lunar communication. Apart from various antenna designs reported in this field, based on their intended usage, two additional classifications are introduced: (a) mission-based antennas—utilized in actual lunar missions—and (b) research-based antennas—employed solely for research purposes. Given the critical need to comprehend and predict lunar conditions and antenna behaviors within those conditions, this review holds immense significance. Its relevance is particularly pronounced in light of the numerous upcoming lunar missions that have been announced.
This article explores the influence of lunar regolith and rover structure, such as mast design and material composition, on antenna parameters. It focuses on the distinctive difficulties of communication in the lunar environment, which need specialized antenna solutions. This study specifically examines the performance of antennas on the lunar Rashid rover within the Atlas crater, a landing site on the moon, considering two antenna types: a sleeve dipole antenna and an all-metal patch antenna. Thermal analyses reveal temperatures in the Atlas crater can exceed 80 °C during lunar mid-day. The findings highlight the effect of different materials used as thermal coatings for Rashid rover antennas, as well as the influence of rover materials on antenna performance. Furthermore, this study extends to analyze the conductivity and depth of lunar regolith within the Atlas crater. Given the critical role of antennas in wireless communication, understanding how lunar regolith properties affect antenna performance is essential. This research contributes to the creation of a strong communication system for the Rashid rover and future lunar missions by considering the features of the lunar regolith in addition to the rover’s size and material attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.