2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) 2010
DOI: 10.1109/aqtr.2010.5520671
|View full text |Cite
|
Sign up to set email alerts
|

LUX color transform for mosaic image rendering

Abstract: In this paper, we present an image mosaic application and investigate the color rendering performances obtained with various color spaces, among which the nonlinear LUX transform, that is based on a logarithmic image processing model and on biological evidence about the retina processing within the human visual system. We focus on the color matching step for automatic forming of the mosaic image (without any user interaction nor color correction post-processing). We derive a semi-normalized version of the LUX … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

2011
2011
2024
2024

Publication Types

Select...
6
1
1

Relationship

2
6

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 12 publications
0
5
0
1
Order By: Relevance
“…It is particularly worth mentioning that the RGB-PSNR [55,56] for the evaluation of color embedded image as presented in Equations (77)-(79),…”
Section: A Duple Watermarking Strategy For Multi-channel Quantum Imagesmentioning
confidence: 99%
“…It is particularly worth mentioning that the RGB-PSNR [55,56] for the evaluation of color embedded image as presented in Equations (77)-(79),…”
Section: A Duple Watermarking Strategy For Multi-channel Quantum Imagesmentioning
confidence: 99%
“…Other solutions have been proposed, especially by Liévin and Luthon (2004) and Luthon et al (2010). They created the LUX (for Logarithmic hUe eXtension) Color System according to the following definitions :…”
Section: ∀X ∈ E (F " + "G)(x) = F (X) + G(x)mentioning
confidence: 99%
“…Cet espace couleur non-linéaire basé sur une transformation logarithmique offre un rendu de contraste performant pour les zones de faible luminance. Il assure une description efficace des teintes, il est peu sensible au bruit et a montré son efficacité en segmentation couleur (Liévin, Luthon, 2004), en compression couleur (Luthon, Beaumesnil, 2004) et en rendu couleur (Luthon et al, 2010). Les trois sources d'information couleur utilisées ici pour la modélisation du visage, notées s j (j = 1, 2, 3), sont respectivement : s 1 = U ; s 2 = X pour la teinte chair, et s 3 = L pour le détecteur de VJ.…”
Section: Introductionunclassified