The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.