Ischemic heart disease caused by occlusion of coronary vessels leads to the death of downstream tissues, resulting in a fibrotic scar that cannot be resolved. In contrast to the adult mammalian heart, the adult zebrafish heart can regenerate following injury, enabling the study of the underlying cellular and molecular mechanisms. One of the earliest responses that take place after cardiac injury in adult zebrafish is coronary revascularization. Previous transcriptomic data from our lab show that vegfc, a well-known regulator of lymphatic development, is upregulated early after injury and peaks at 96 hours post cryoinjury, coinciding with the peak of coronary endothelial cell proliferation. To test the hypothesis that vegfc is involved in coronary revascularization, I examined its expression pattern and found that it is expressed by coronary endothelial cells after cardiac damage. Using a loss-of-function approach to block Vegfc signaling, I found that it is required for coronary revascularization during cardiac regeneration. Notably, blocking Vegfc signaling resulted in a significant reduction in cardiomyocyte regeneration. Using transcriptomic analysis, I identified the extracellular matrix component gene emilin2a and the chemokine gene cxcl8a as effectors of Vegfc signaling. During cardiac regeneration, cxcl8a is expressed in epicardium-derived cells, while the gene encoding its receptor cxcr1 is expressed on coronary endothelial cells. I found that overexpressing emilin2a increases coronary revascularization, and induces cxcl8a expression. Using loss-of-function approaches, I observed that both cxcl8a and cxcr1 are required for coronary revascularization after cardiac injury. Altogether, my findings indicate that Vegfc acts as an angiocrine factor that plays an important role in regulating cardiac regeneration in zebrafish. Mechanistically, Vegfc promotes the expression of emilin2a, which promotes coronary proliferation, at least in part by enhancing Cxcl8a-Cxcr1 signaling. This study helps in understanding the mechanisms underlying coronary revascularization during cardiac regeneration, with promising therapeutic applications for human heart regeneration.