In this study, failure behavior of fiber-reinforced composites under four-point bending is investigated. First, the tests are modeled analytically using the classical lamination theory (CLT). The maximum allowable moment resultants of [ 12 ] T offaxis laminate as well as balanced and symmetric angle-ply [ 3 /À 3 ] s composite laminates as a function of fiber orientation angle, , are obtained using Tsai-Wu, maximum stress, maximum strain, Hashin, Tsai-Hill, Hoffman, quadric surfaces, modified quadric surfaces, and Norris failure criteria. Second, the same tests are simulated using the finite element method (FEM). Thermal residual stresses are calculated and accounted for in the failure analysis. An analysis is conducted for optimal positioning of the supports so as to ensure that intralaminar failure modes dominate interlaminar (delamination) failure mode. A test setup is then constructed accordingly and experiments are conducted. The correlation of the predicted failure loads and the experimental results is discussed. The quadric surfaces criterion is found to correlate better with the experimental results among the chosen failure criteria for the selected configurations.