Self-deployable mobile networks represent a new type of cellular networks, that can be rapidly deployed, easily installed, and operated on demand, anywhere, anytime. They can provide network services when a classical cellular network fails, is not suitable, or does not exist. Using network virtualization techniques, core network and base station functions can be colocated together into a single equipment. This brings the network functions closer to the user, but the placement of the local core network has a significant impact on the network performance, mainly in terms of capacity and delay. In this work, we are focused on the delay minimization from BSs to the local core network. We propose a heuristic for the local core network placement, with the objective of reducing the delay. We show that the delay obtained by our solution decreases significantly compared to a strategy that places the local core network in order to maximize the capacity. We also show that considering a capacity-based placement strategy leads to infinite delay in some cases.