2009
DOI: 10.5802/aif.2454
|View full text |Cite
|
Sign up to set email alerts
|

Mesures de Mahler et équidistribution logarithmique

Abstract: Soit X un schéma projectif intègre sur un corps de nombres F ; soit L un fibré en droites ample sur X muni d'une métrique adélique semi-positive au sens de Zhang. Les résultats principaux de cet article sont :1) Une formule qui calcule les hauteurs locales (relativement à L) d'un diviseur de Cartier sur X comme des « mesures de Mahler » généralisées, c'est-à-dire les intégrales de fonctions de Green pour D contre des mesures associées à L ;2) Un théorème d'équidistribution des points de « petite » hauteur vala… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
64
0
1

Year Published

2009
2009
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 46 publications
(67 citation statements)
references
References 29 publications
(49 reference statements)
2
64
0
1
Order By: Relevance
“…That is, ζ is a totally invariant point for the morphism ϕ an v . By analogy with the case of complex dynamical systems, we expect that the invariant measure µ ϕ,v can be completely characterized as the unique Borel probability measure on X an v such that See the articles of Chambert-Loir [CL06] and Chambert-Loir/Thuillier [CLT08] for proofs that the above properties hold for the measure µ ϕ,v . It is not yet known if they determine the measure.…”
Section: Dynamical Heights Let the Datamentioning
confidence: 99%
“…That is, ζ is a totally invariant point for the morphism ϕ an v . By analogy with the case of complex dynamical systems, we expect that the invariant measure µ ϕ,v can be completely characterized as the unique Borel probability measure on X an v such that See the articles of Chambert-Loir [CL06] and Chambert-Loir/Thuillier [CLT08] for proofs that the above properties hold for the measure µ ϕ,v . It is not yet known if they determine the measure.…”
Section: Dynamical Heights Let the Datamentioning
confidence: 99%
“…see for instance [13,Lemme 5.1]. This lower bound is a key result in the study of the distribution of the Galois orbits of points of small height.…”
Section: Theorem D (Proposition 43) -Let Nmentioning
confidence: 96%
“…as in Section 2.2. We give a formulation of a v-adic equidistribution theorem due to Chambert-Loir (Theorem 3.1 of [6]), Chambert-Loir and Thuillier (Theorem 1.1(b) of [7]), and Yuan (Theorem 3.1 or 3.2 of [29]) in our context. For the general formulation in a more general context, see the references just mentioned.…”
Section: Approximations Of the Local Heights At The Primes V ∞mentioning
confidence: 99%
“…For the general formulation in a more general context, see the references just mentioned. In general, we can define the so-called canonical measure dμ v for any (finite or infinite) prime v of k. [6,7,29]. ) Keep the notation k, ϕ, etc.…”
Section: Approximations Of the Local Heights At The Primes V ∞mentioning
confidence: 99%
See 1 more Smart Citation