The metacommunity concept provides a theoretical framework that aims at explaining organism distributions by a combination of environmental filtering, dispersal, and drift. However, few works have attempted a multitaxon approach and even fewer have compared two distant biogeographical regions using the same methodology. We tested the expectation that temperate (mediterranean-climate) pond metacommunities would be more influenced by environmental and spatial processes than tropical ones, because of stronger environmental gradients and a greater isolation of waterbodies. However, the pattern should be different among groups of organisms depending on their dispersal abilities. We surveyed 30 tropical and 32 mediterranean temporary ponds from Costa Rica and Spain, respectively, and obtained data on 49 environmental variables. We characterized the biological communities of bacteria and archaea (from the water column and the sediments), phytoplankton, zooplankton, benthic invertebrates, amphibians and birds, and estimated the relative role of space and environment on metacommunity organization for each group and region, by means of variation partitioning using generalized additive models.Purely environmental effects were important in both tropical and mediterranean ponds, but stronger in the latter, probably due to their larger limnological heterogeneity. Spatially correlated environment and pure spatial effects were greater in the tropics, related to higher climatic heterogeneity and dispersal processes (e.g., restriction, surplus) acting at different scales. The variability between taxonomic groups in the contribution of spatial and environmental factors to metacommunity variation was very wide, but higher in active,