2019
DOI: 10.21303/2461-4262.2019.00983
|View full text |Cite
|
Sign up to set email alerts
|

Method for Detecting Shilling Attacks in E-Commerce Systems Using Weighted Temporal Rules

Abstract: The problem of shilling attacks detecting in e-commerce systems is considered. The purpose of such attacks is to artificially change the rating of individual goods or services by users in order to increase their sales. A method for detecting shilling attacks based on a comparison of weighted temporal rules for the processes of selecting objects with explicit and implicit feedback from users is proposed. Implicit dependencies are specified through the purchase of goods and services. Explicit feedback is formed … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
4

Year Published

2019
2019
2021
2021

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 8 publications
(12 citation statements)
references
References 14 publications
0
8
0
4
Order By: Relevance
“…In the third step, basic explanations are formed that take into account the temporal dynamics of user interests. At the fourth step, a set of matched temporal rules is formed (4). All rules from this set satisfy the constraint (3).…”
Section: Discussion Of the Results Of Developing A Methods For Clarifymentioning
confidence: 99%
“…In the third step, basic explanations are formed that take into account the temporal dynamics of user interests. At the fourth step, a set of matched temporal rules is formed (4). All rules from this set satisfy the constraint (3).…”
Section: Discussion Of the Results Of Developing A Methods For Clarifymentioning
confidence: 99%
“…The difference between the proposed method and [13] in detecting a shilling attack consists in the use of a set of temporal rules that associate all previous intervals with the current one ( Fig. 1), which makes it possible to obtain a generalized estimate of the discrepancies between sales and rating.…”
Section: Discussion Of the Results Of Developing A Methods For Detectimentioning
confidence: 99%
“…Therefore, such rules can specify temporal relationships between intervals or points in time and between subsets of facts ordered in time. The "Next" rule uses the temporal operator X, which links two successive selection/rating events [13]. When this rule is fulfilled, no true intermediate facts can exist between the facts Ф m and Ф s .…”
Section: A Temporal Model Of the Process Of Changing Of The Recommendmentioning
confidence: 99%
See 1 more Smart Citation
“…Штучне спотворення рейтингів товарів та послуг є наслідком атак користувачів (шилінг-атак) з метою збільшення продажів цільової групи об'єктів [8]. Отримані з використанням спотворених даних рекомендації відповідають інтересами зловмисників, а не користувачів рекомендаційною системи [9]. Тому спотворення рекомендацій може знизити довіру користувача до рекомендаційної системи і, як наслідок, зменшити продажі товарів та послуг у відповідній системі електронної комерції.…”
Section: вступunclassified