Microcarriers (MCs) are adaptable therapeutic instruments that may be adjusted to specific therapeutic uses, making them an appealing alternative for regenerative medicine and drug delivery. MCs can be employed to expand therapeutic cells. MCs can be used as scaffolds for tissue engineering, as well as providing a 3D milieu that replicates the original extracellular matrix, facilitating cell proliferation and differentiation. Drugs, peptides, and other therapeutic compounds can be carried by MCs. The surface of the MCs can be altered, to improve medication loading and release, and to target specific tissues or cells. Allogeneic cell therapies in clinical trials require enormous volumes of stem cells, to assure adequate coverage for several recruitment locations, eliminate batch to batch variability, and reduce production costs. Commercially available microcarriers necessitate additional harvesting steps to extract cells and dissociation reagents, which reduces cell yield and quality. To circumvent such production challenges, biodegradable microcarriers have been developed. In this review, we have compiled key information relating to biodegradable MC platforms, for generating clinical-grade cells, that permit cell delivery at the target site without compromising quality or cell yields. Biodegradable MCs could also be employed as injectable scaffolds for defect filling, supplying biochemical signals for tissue repair and regeneration. Bioinks, coupled with biodegradable microcarriers with controlled rheological properties, might improve bioactive profiles, while also providing mechanical stability to 3D bioprinted tissue structures. Biodegradable materials used for microcarriers have the ability to solve in vitro disease modeling, and are advantageous to the biopharmaceutical drug industries, because they widen the spectrum of controllable biodegradation and may be employed in a variety of applications.