In recent years, nanotechnologies have evolved from a multidisciplinary research concept to a primary scientific field. Rapid growth of new technologies has led to the development of nanoscale device components, advanced sensors, and novel biomimetic materials. In addition to chemical and physical approaches a new, simple and cheaper strategy to synthesize metal nanoparticles utilizes biological tools such as bacteria, yeasts, fungi, and plants. The majority of research has investigated ex vivo synthesis of nanoparticles in plants, proving that this method is very cost effective, and can therefore be used as an economic and valuable alternative for the large-scale production of metal nanoparticles. Instead, very few studies have been devoted to investigating the potential of living plants. The synthesis of metal nanoparticles using living plants is discussed in this review. So far, metal NPs formation in living plants has been observed for gold, silver, copper and zinc oxide. To date the results achieved demonstrate the feasibility of this process; however several aspects of the plant physiology involved should be clarified in order to be able to gain better control and modulate the formation of these new materials. Plant sciences could significantly contribute to fully exploring the potential of phyto-synthesis of metal nanoparticles.