In order to obtain more realistic characteristics of the converter, a fractional-order inductor and capacitor are used in the modeling of power electronic converters. However, few researches focus on power electronic converters with a fractional-order mutual inductance. This paper introduces a fractional-order flyback converter with a fractional-order mutual inductance and a fractional-order capacitor. The equivalent circuit model of the fractional-order mutual inductance is derived. Then, the state-space average model of the fractional-order flyback converter in continuous conduction mode (CCM) are established. Moreover, direct current (DC) analysis and alternating current (AC) analysis are performed under the Caputo fractional definition. Theoretical analysis shows that the orders have an important influence on the ripple, the CCM operating condition and transfer functions. Finally, the results of circuit simulation and numerical calculation are compared to verify the correctness of the theoretical analysis and the validity of the model. The simulation results show that the fractional-order flyback converter exhibits smaller overshoot, shorter setting time and higher design freedom compared with the integer-order flyback converter.