River engineering investigations require some level of hydrodynamic and morphologic analysis. The detailed of the hydraulic and morphologic features through meander evolution can be recorded by the numerical model spatially and temporally. The Center for Computational Hydro-science and Engineering, two- dimensional model (CCHE2D V3.29) was adopted to investigate the hydraulic and morphologic changes through meander’s evolution. Through the experimental work, a series of experiments runs were carried out through combining different geometric and hydraulic parameters to produce different experiment conditions. These parameters are flow rate, bed slope, and different initial incised and wide channels for both rectangular and trapezoidal sections. The CCHE2D model was calibrated and verified using two sets of experimental data. According to the computed values of statistical indicators, BIAS, NSE, and MAE of 0.0084, 0.96, and 0.0132 respectively for water level simulation, and 0.007,0.94, and 0.0182 respectively for bed level simulation, the calibrated Manning’s roughness which gives an acceptable agreement between simulated and measured water and bed levels was 0.029. The verification results were evaluated by the same statistical indicators of BIAS, NSE, and MAE of 0.09, 0.81, and 0.018, respectively, as evidenced by the statistical indicators, values that the CCHE2D model was reasonably capable of simulating the hydraulic and morphological changes through meander evolution.