Today, wastewater irrigation is one of the best options to reduce the stress on limited availability of fresh water and to meet the nutrient requirements of crops. In the present study, the simulation accuracy and performance of the HYDRUS-1D model to predict phosphorus leaching have been evaluated and compared to lysimeter data. More specifically, the effects of irrigation using four types of water (wastewater, effluent, mixture of freshwater and effluent, and freshwater) on three types of soil (sandy loam, loam, and clay loam) have been investigated both experimentally and numerically. Barley was planted as a common agricultural crop. The leachates from lysimeters have been collected and sampled at the beginning, middle, and end of the growing season. These samples have then been analyzed for phosphorous. The results show that the trend of change in nutrient concentration (P) was a function of plant requirement. Maximum process of leaching occurred concurrent with minimum plant requirement. The average phosphorus leaching into the root depths turns out to be insignificant, as it amounts to only 0.65-1.65%. This reassuring result means that wastewater with high concentrations of phosphorus compounds (up to 5-10.3 PO 4 -P mgl −1 ) can just be treated through an intermittent application to the land surface. Overall, a good agreement between experimental-and numerical-model results is obtained, wherefore the model overestimates the mean phosphate leaching during the growing season of the crop slightly. On the basis of these results, soil with loamy texture was considered to be the most suitable type for irrigation with wastewater and effluent. The results of this research indicate that with a proper management program in regard to the types of soil to be used, crops to be cultivated, water quality, and timing maneuver, the negative impacts of low quality water on soil/plant/groundwater systems can be minimized.