Accurate species delimitation is of primary importance in biodiversity assessments and in reconstructing patterns and processes in the diversification of life. However, the discovery of cryptic species in virtually all taxonomic groups unveiled significant gaps in our knowledge of biodiversity. Mimicry complexes are good candidates to source for cryptic species. Indeed, members of mimicry complexes undergo selective pressures on their habitus, which results in strong resemblance even between distantly related species. In this study, we used a multi-locus genetic approach to investigate the presence of cryptic diversity within a group of mimetic day-flying moths whose systematics has long been controversial, the Euro-Anatolian Syntomis. Results showed incongruence between species boundaries and the currently accepted taxonomy of this group. Both mitochondrial and nuclear markers indicate the presence of four, well-distinct genetic lineages. The genetic distance and time of divergence between the Balkan and Italian populations of S. marjana are the same as those found between S. phegea and S. ragazzii, the last two being well-distinct, broadly sympatrically occurring species. The divergence between the two lineages of S. marjana dates back to the Early Pleistocene, which coincided with substantial changes in climatic conditions and vegetation cover in Southern Europe that have likely induced geographic and ecological vicariance. Syntomis populations belonging to the taxa kruegeri (s. str.), albionica and quercii are now considered a separate species from marjana s. str. and are thus distinguished as Syntomis quercii Verity, 1914, bona sp., stat. nov. Our results show that the species richness of mimicry complexes inhabiting temperate regions might still be severely underestimated.