Abstract:The chemical oxidative polymerization of 2-aminothiazole (AT) was studied in aqueous solution using copper chloride (CuCl 2 ) as an oxidant. The effect of varying the reaction temperature, reaction time and oxidant/monomer molar ratio on the polymer yield was investigated. The resulting poly(2-aminothiazole)s (PATs) were characterized by FTIR, 1 H NMR, UV-vis, gel permeation chromatography, scanning electron microscopy, thermogravimetric analysis and four-point probe electrical conductivity measurements. Compared with a previous study, PATs with higher yield (81%) and better thermal stability could be synthesized. The chemical oxidative polymerization kinetics of AT were studied for the first time. The orders of the polymerization reaction with respect to monomer concentration and oxidant concentration were found to be 1.14 and 0.97, respectively, and the apparent activation energy of the polymerization reaction was determined to be 21.57 kJ/mol.