This paper explores the study of multi-choice multi-objective transportation problem (MCMTP) under the environment of utility function approach. MCMTP is converted to multi-objective transportation problems (MOTP) by transforming the multi-choice parameters like cost, demand, and supply to real-valued parameters. A general transformation procedure using binary variables is illustrated to reduce MCMTP into MOTP. Most of the MOTP are solved by goal programming (GP) approach. Using GP, the solution of MOTP may not be satisfied all the time by the decision maker (DM) when the proposed problem contains interval-valued aspiration level. To overcome this difficulty, here we propose the approaches of revised multi-choice goal programming (RMCGP) and utility function into the MOTP and then compared the solution between them. Finally, numerical examples are presented to show the feasibility and usefulness of our paper.