Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The effect of the chemical structure of vinyl chloride-based polymers, such as poly(vinyl chloride) (PVC), chlorinated PVC (cPVC), vinyl chloride/vinylidene chloride copolymer VCVD-40TM, vinyl chloride/vinyl acetate copolymer А-15TM on its compatibility with poly(ether-urethane)urea elastomer (PUU) was studied by DSC and FTIR spectroscopy. The segmented PUU was synthesized by prepolymer approach in N,N-dimethylformamide (DMF) solution using poly(propylene glycol) of number-averaged molecular weight (Mn) of 1000 Da, 2,4-tolylenediisocyanate and tolylene 2,4-diamine as a chain extender at a molar ratio of 1:2:1. PUU/vinyl chloride-based polymer blends was prepared by solution casting technique vie DMF solution. It was found a compatibility of PUU based blends containing 30 % PVC (PUU/30PVC blend) or cPVC (PUU/30cPVC) were initiated by strong hydrogen bonding. As a result, the blends are characterized by single wide relaxation transition. A glass transition temperature (Тс) of PUU/30PVC composite is similar to the theoretical one (ТFс), which is calculated using the Flory-Fox equation, whereas Тс value of PUU/30cPVC composite is higher than ТFс. Introducing polar vinyl acetate or vinylidene chloride fragments into vinyl chloride-based polymer macrochains suppresses the compatibility of components of the polymer blends and initiates the formation of a biphase microheterogeneous structure. The formation of intermolecular hydrogen bonding network at the interface in polymer-polymer blends is confirmed by FTIR spectroscopy. Comparative analysis of experimental and theoretically calculated (additive) tensile characteristics of polymer blends demonstrates their substantial dependence on interface interactions between the constituents. The highest strengthening effect was observed for cPVC or PVC-containing nanocomposites.
The effect of the chemical structure of vinyl chloride-based polymers, such as poly(vinyl chloride) (PVC), chlorinated PVC (cPVC), vinyl chloride/vinylidene chloride copolymer VCVD-40TM, vinyl chloride/vinyl acetate copolymer А-15TM on its compatibility with poly(ether-urethane)urea elastomer (PUU) was studied by DSC and FTIR spectroscopy. The segmented PUU was synthesized by prepolymer approach in N,N-dimethylformamide (DMF) solution using poly(propylene glycol) of number-averaged molecular weight (Mn) of 1000 Da, 2,4-tolylenediisocyanate and tolylene 2,4-diamine as a chain extender at a molar ratio of 1:2:1. PUU/vinyl chloride-based polymer blends was prepared by solution casting technique vie DMF solution. It was found a compatibility of PUU based blends containing 30 % PVC (PUU/30PVC blend) or cPVC (PUU/30cPVC) were initiated by strong hydrogen bonding. As a result, the blends are characterized by single wide relaxation transition. A glass transition temperature (Тс) of PUU/30PVC composite is similar to the theoretical one (ТFс), which is calculated using the Flory-Fox equation, whereas Тс value of PUU/30cPVC composite is higher than ТFс. Introducing polar vinyl acetate or vinylidene chloride fragments into vinyl chloride-based polymer macrochains suppresses the compatibility of components of the polymer blends and initiates the formation of a biphase microheterogeneous structure. The formation of intermolecular hydrogen bonding network at the interface in polymer-polymer blends is confirmed by FTIR spectroscopy. Comparative analysis of experimental and theoretically calculated (additive) tensile characteristics of polymer blends demonstrates their substantial dependence on interface interactions between the constituents. The highest strengthening effect was observed for cPVC or PVC-containing nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.