Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Unpaired image translation with feature-level constraints presents significant challenges, including unstable network training and low diversity in generated tasks. This limitation is typically attributed to the following situations: 1. The generated images are overly simplistic, which fails to stimulate the network’s capacity for generating diverse and imaginative outputs. 2. The images produced are distorted, a direct consequence of unstable training conditions. To address this limitation, the unpaired image-to-image translation with diffusion adversarial network (UNDAN) is proposed. Specifically, our model consists of two modules: (1) Feature fusion module: In this module, one-dimensional SVD features are transformed into two-dimensional SVD features using the convolutional two-dimensionalization method, enhancing the diversity of the images generated by the network. (2) Network convergence module: In this module, the generator transitions from the U-net model to a superior diffusion model. This shift leverages the stability of the diffusion model to mitigate the mode collapse issues commonly associated with adversarial network training. In summary, the CycleGAN framework is utilized to achieve unpaired image translation through the application of cycle-consistent loss. Finally, the proposed network was verified from both qualitative and quantitative aspects. The experiments show that the method proposed can generate more realistic converted images.
Unpaired image translation with feature-level constraints presents significant challenges, including unstable network training and low diversity in generated tasks. This limitation is typically attributed to the following situations: 1. The generated images are overly simplistic, which fails to stimulate the network’s capacity for generating diverse and imaginative outputs. 2. The images produced are distorted, a direct consequence of unstable training conditions. To address this limitation, the unpaired image-to-image translation with diffusion adversarial network (UNDAN) is proposed. Specifically, our model consists of two modules: (1) Feature fusion module: In this module, one-dimensional SVD features are transformed into two-dimensional SVD features using the convolutional two-dimensionalization method, enhancing the diversity of the images generated by the network. (2) Network convergence module: In this module, the generator transitions from the U-net model to a superior diffusion model. This shift leverages the stability of the diffusion model to mitigate the mode collapse issues commonly associated with adversarial network training. In summary, the CycleGAN framework is utilized to achieve unpaired image translation through the application of cycle-consistent loss. Finally, the proposed network was verified from both qualitative and quantitative aspects. The experiments show that the method proposed can generate more realistic converted images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.