BackgroundWe have defined a project to develop a mobile app that continually records smartphone parameters which may help define the Eastern Cooperative Oncology Group performance status (ECOG-PS) and the health-related quality of life (HRQoL), without interaction with patients or professionals. This project is divided into 3 phases. Here we describe phase 1. The objective of this phase was to develop the app and assess its usability concerning patient characteristics, acceptability, and satisfaction.MethodsThe app eB2-ECOG was developed and installed in the smartphone of cancer patients who will be followed for six months. Criteria inclusion were: age over 18-year-old; diagnosed with unresectable or metastatic lung cancer, gastrointestinal stromal tumor, sarcoma, or head and neck cancer; under systemic anticancer therapies; and possession of a Smartphone. The app will collect passive and active data from the patients while healthcare professionals will evaluate the ECOG-PS and HRQoL through conventional tools. Acceptability was assessed during the follow-up. Patients answered a satisfaction survey in the app between 3-6 months from their inclusion.ResultsThe app developed provides a system for continuously collecting, merging, and processing data related to patient’s health and physical activity. It provides a transparent capture service based on all the available data of a patient. Currently, 106 patients have been recruited. A total of 36 patients were excluded, most of them (21/36) due to technological reasons. We assessed 69 patients (53 lung cancer, 8 gastrointestinal stromal tumors, 5 sarcomas, and 3 head and neck cancer). Concerning app satisfaction, 70.4% (20/27) of patients found the app intuitive and easy to use, and 51.9% (17/27) of them said that the app helped them to improve and handle their problems better. Overall, 17 out of 27 patients [62.9%] were satisfied with the app, and 14 of them [51.8%] would recommend the app to other patients.ConclusionsWe observed that the app’s acceptability and satisfaction were good, which is essential for the continuity of the project. In the subsequent phases, we will develop predictive models based on the collected information during this phase. We will validate the method and analyze the sensitivity of the automated results.