2002
DOI: 10.1109/20.996290
|View full text |Cite
|
Sign up to set email alerts
|

Multiobjective genetic algorithms applied to solve optimization problems

Abstract: In this paper, we discuss multiobjective optimization problems solved by evolutionary algorithms. We present the nondominated sorting genetic algorithm (NSGA) to solve this class of problems and its performance is analyzed in comparing its results with those obtained with four others algorithms. Finally, the NSGA is applied to solve the TEAM benchmark problem 22 without considering the quench physical condition to map the Pareto-optimum front. The results in both analytical and electromagnetic problems show it… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
54
0
5

Year Published

2005
2005
2018
2018

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 139 publications
(59 citation statements)
references
References 7 publications
(12 reference statements)
0
54
0
5
Order By: Relevance
“…Por ello, este trabajo propone utilizar un algoritmo Epsilon MOEA[11] [19] con el fin de optimizar ambos objetivos simultáneamente. Cabe destacar que la tecnología mencionada permite trabajar con una gran cantidad de parámetros y deja la posibilidad de agregar nuevos objetivos a optimizar en el futuro.…”
Section: Estructura De Gdarimunclassified
“…Por ello, este trabajo propone utilizar un algoritmo Epsilon MOEA[11] [19] con el fin de optimizar ambos objetivos simultáneamente. Cabe destacar que la tecnología mencionada permite trabajar con una gran cantidad de parámetros y deja la posibilidad de agregar nuevos objetivos a optimizar en el futuro.…”
Section: Estructura De Gdarimunclassified
“…Dias & Vasconcelos (2002) compared the NSGA with four others multiobjective evolutionary algorithms using two test problems. The NSGA performed better than the others did, showing that it can be successfully used to find multiple Paretooptimal solutions.…”
Section: Nondominated Sorting Genetic Algorithmmentioning
confidence: 99%
“…These two goals cause enormous search space in MOPs and let deterministic algorithms feel difficult to obtain the Pareto-optimal solutions. Therefore, satisfying these two goals simultaneously is a principal challenge for any algorithm to deal with MOPs (Dias & Vasconcelos, 2002). In recent years, several evolutionary algorithms (EAs) have been proposed to solve MOPs.…”
Section: Introductionmentioning
confidence: 99%