2021
DOI: 10.1155/2021/7374177
|View full text |Cite
|
Sign up to set email alerts
|

Multiscale Bidirectional Input Convolutional and Deep Neural Network for Human Activity Recognition

Abstract: In this paper, we proposed a multiscale and bidirectional input model based on convolutional neural network and deep neural network, named MBCDNN. In order to solve the problem of inconsistent activity segments, a multiscale input module is constructed to make up for the noise caused by filling. In order to solve the problem that single input is not enough to extract features from original data, we propose to manually design aggregation features combined with forward sequence and reverse sequence and use five … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?