Wastewater is a pooled sampling instrument that may provide rapid and even early disease signals in the surveillance of COVID-19 disease at the community level, yet the fine-scale temporal dynamics of SARS-CoV-2 RNA in wastewater remains poorly understood. This study tracked the daily dynamics of SARS-CoV-2 RNA in the wastewater from two wastewater treatment plants (WWTPs) in Honolulu during a rapidly expanding COVID-19 outbreak and a responding four-week lockdown that resulted in a rapid decrease of daily clinical COVID-19 new cases. The wastewater SARS-CoV-2 RNA concentration from both WWTPs, as measured by three quantification assays (N1, N2, and E), exhibited both significant inter-day fluctuations (10
1.2
-10
5.1
gene copies or GC/L in wastewater liquid fractions, or 10
1.4
-10
6.2
GC/g in solid fractions) and an overall downward trend over the lockdown period. Strong and significant correlation was observed in measured SARS-CoV-2 RNA concentrations between the solid and liquid wastewater fractions, with the solid fraction containing majority (82.5%-92.5%) of the SARS-CoV-2 RNA mass and the solid-liquid SARS-CoV-2 RNA concentration ratios ranging from 10
3.6
to 10
4.3
mL/g. The measured wastewater SARS-CoV-2 RNA concentration was normalized by three endogenous fecal RNA viruses (F
+
RNA coliphages Group II and III, and pepper mild mottle virus) to account for potential variations that may occur during the multi-step wastewater processing and molecular quantification, and the normalized abundance also exhibited similar daily fluctuations and overall downward trend.