This paper describes a new and facile approach for the formation of pore-spanning bilayer lipid membranes (BLMs) within a poly(dimethylsiloxane) (PDMS) microfluidic device. Commercially, readily available polycarbonate (PC) membranes are employed for the support of BLMs. PC sheets with 5 μm, 2 μm, and 0.4 μm pore diameters, respectively, are thermally bonded into a multilayer-stack, reducing the pore density of 0.4 μm-pore PC by a factor of 200. The BLMs on this support are considerably stable (a mean lifetime: 17 h). This multilayer-stack PC (MSPC) membrane is integrated into the PDMS chip by an epoxy bonding method developed to secure durable bonding under the use of organic solvents. The microchip has a special channel for guiding a micropipette in the proximity of the MSPC support. With this on-site injection technique, tens to hundreds of nanoliters of solutions can be directly dispensed to the support. Incorporating gramicidin ion channels into BLMs on the MSPC support has confirmed the formation of single BLMs, which is based on the observation from current signals of 20 pS conductance that is typical to single channel opening. Based on the bilayer capacitance (1.4 pF), about 15% of through pores across the MSPC membrane are estimated to be covered with BLMs.