The global health concern on wound care is becoming more challenging with the emerging prevalence of inexorable antibiotic resistance. Amidst this crisis, various material innovations have been made to combat this dilemma. Herein, squid pens, which are regarded as discards in the seafood industry, were biorefined into β-chitin-graft-polyaniline (β-chitin-g-PANI) composites for possible wound dressing development. β-chitin was first chemically extracted from gladii, and was then grafted with PANI via in situ chemical oxidative polymerization of various concentrations of aniline, to produce the β-chitin-g-PANI composites. Supporting data from FTIR, UV-Vis, SEM, TGA, and DSC suggest that β-chitin was successfully grafted with PANI. Moreover, improved conductivity and in vitro degradation of the composites were observed as compared to β-chitin and PANI alone, respectively. Zones of inhibition observed from agar diffusion method suggest that the synthesized composites have antibacterial activity against E. coli and S. aureus. The resulting physicochemical and biological properties of integrating conducting PANI to β-chitin substantiated and rendered the β-chitin-g-PANI composites desirable candidates for the development wound care products.